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ABSTRACT

This technical report summarizes the image processing re-
search activities performed by the University of Southern California
during the period of 1 March 1974 to 31 August 1974 under Contract
No. F08606-72-C-0008 with the Advanced Research Projects Agency,
Information Processing Techniques Office.

The research program, entitled, '"Image Processing Research,"
has as its primary purpose the analysis and development of techniques
and systems for efficiently generating, processing, transmitting, and

displaying visual images and two dimensional data arrays. Research

is oriented toward digital processing and transmission systems. Five

task areas are reported on: (1) Image Coding Projects, the investigation

of digital bandwidth reduction coding methods; (2) Image Restoration and

Enhancement Projects: the improvement of image fidelity and presentation

format; (3) Image Data Extraction Projects: the recognition of objects

within pictures and quantitative measurement of image features; (4) Image

Analysis Projects, the development of quantitative measures of image

quality and analytic representation; (5) Image Processing Support Projects,

development of image processing hardware and software support systems,
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1. Research Project Overview

This report describes the progress and results of the University
of Southern Califcrnia image processing research study for the period of
1 March 1974 to 31 August 1974. The image processing research study
has been subdivided into five projects:

Image Coding Projects

Image Restoration and Enhancement Projects

Image Data Extraction Projects
Image Analysis Projects

Image Processing Support Projects

In image coding the orientation of the research is toward the development
of digital image coding systems that represent monochrome and color im-
ages with a minimal number of code bits. Image restoration is the task
of improving the fidelity of an image in the sense of compensating for im-
age degradations. In image enhancement, picture manipulation processes
are performed to provide a more subjectively pleasing image or to convert
the image to a form more amenable to human or machine analysis. The
ohjectives of the image data cxtraction projects are the registration of im-
ages, detection of objects within pictures and measurements of image fea-
tures. The image analysis projects comprise the background research ef-
fort into the basic structure of images in order to develop meaningful quan-
titative characterizations of an image. Finally, the image support projects
include research on image processing computer languages and the develop-
ment of experimental equipment for the sensing, processing, and display of
images,

The next section of this report summarizes some of the research
project activities during the past six months. Sections 3 to 7 describe the

research effort on the projects listed above during the reporting periocd.

A capsule description of the physical facilities of the USC Image Proces-
sing is contained in Section 8. Section 9 is a list of publications by project

members,
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2. Research Project Activities

Significant research project activities of the past six months are

summarized below:

Summer Short Courses. One of the vehicles for the transfer of ARPA spon-

sored image processing research technology to the Federal and industrial
communities has been through intensive one and two week short courses.
For the past four years the University has offered a one week Summer
short course in Mathematical Pattern Recognition and a two week course
in Digital Image Processing. In addition, this Summer, a third short
course of one week duration was initiated on Optical Processing. TlLe

alumni of these courses now numbers in the hundreds,

Picture Coding Symposium. Professor's William K. Pratt, Ali Habibi,

and Werner Frei attended the Picture Coding Symposium held in Goslar,
West Germany on 26-28 August, 1974, Approximately 150 persons from
throughout the free world attended the meeting which was devoted to ses-
sions on: human observer characteristics, intraframe image coding, inter-
frame image coding, color image coding, and multi-spectral data coding,
At the conference a contest was held to choose the best algorithms for pic-
ture coding developed during the past 18 months., Dr. Ali Habibi of USC

was awarded a prize for the best coding algorithm for monochrome image

coding with 1, 0 bits/pixel.

Special Issues, During the past six months two special issues relating to

image processing were published. Professor Harry C. Andrews of USC

was editor of the JEEE Computer journal May 1974 special issue on ""Com-

puter Image Processing.'"" The Society of Photo-Optical Instrumentation

Engineers devoted its May 1974 issue of Optical Engineering to optical and

digital image processing under the editorship of Professor Alexander A.
Sawzhuk of USC,




3. Image Coding Projects

The effort in image coding is directed toward the research and
development of image coding systems providing a transmission bit rate
reduction and tolerance to channel errors. Coding systems are under
investigation for: monochrome and color imagery; slow scan and rea!
time television; and information preserving and controlled fidelity
operation. Results of this research study during the past six months
are summarized here and presented in detail in subsequent sections.

The first report concerns a performance study of several
adaptive linear predictive image coding systems. One such system
which adaptively codes by DPCM or deltamodulation dependent upon
picture quality has been found to provide high fidelity coding down to
about 2.0 bits/pixel.

The next report describes an application of Hadamard and Slant
transforms to interframe image coding. Good results are obtained at
an average of much less than one bit/pixel.

In the final report simulation results are given tor transform
coding spectrum interpolation in which receiver post-processing is
employed to reduce quantization error effects on transform coefficients.,
Reduction in mean square error of about 30% can be obtained by this

technique.

3,1 Adaptive Dual Mode DPCM/Deltamodulation Image Coding
Techniques

William K. Pratt

Standard one bit per sample deltamodulation provides a consider-
able bandwidth reduction, but suffers from the compiementary problems
of image granularity in smooth areas of an image and slope overload in
image regions of rapid brightness change. These problems may be
alleviated by quantizing the difference signal with more levels as in 3 bit

per sample DPCM, but of course, the bandwidth reduction is sacrificed.

A compromise technique has been investigated in which the image coder




i operates in a dual mode: DPCM in regions of high image activity and

deltamodulation in regions of low activity, The switch between modes
is performed adaptively based upon the relative image activity.

In a basic deltamodulation image coding system a prediction of
the next pixel to be scanned is made based upon the previously scanned
pixel. The difference between the actual pixel value and its estimate is
quantized to two levels and transmitted as a binary pulse (one bit pixel
code). Figures la to lc contain computer simulation photographs of
deltamodulation coded pictures for three quantization levels ‘q =5%, 10%,
20%) and a previous pixel weighting of 90%. The tradeoff between slope
overload error and granularity error is readily apparent from the photo-
graphs.

With DPCM encoding the difference signal between a scanned
pixel and its previous pixel estimate is quantized to 8 levels '3 bit/pixel
code) which are nonlinearly spaced to minimize quantization error. Figare
1d contains an example of DPCM coding when the first threshold level is
set at 2. 5% full scale and a 90% previous pixel weighting is employed.
The resultant image q1ality is satisfactory for most applications.

One possibility for reducing the bit rate requirement of DPCM is
to employ a dual mode coder which switches from DPCM to deltamodulation
in regions of nearly constant grey level and from deltamodulation to DPCM

in edge regions. A simple algorithm for the switch is as follows:

(a.) Switch from deltamodulation to DPCM if three sequential delta
bits are of the same sign
(b.) Switch from DPCM to deltamodulation if DPCM quantizer shifts
from smallest positive to smallest negative quantization level
or vice versa,
By adjusting the quantization levels for the DPCM and deltamodulation 1
quantizers it is possible to control the relative time division between
states. One of the major advantages of the ercoder is that the decoding :
may be performed at the receiver from the transmitted code without any
explicit code bits required to designate the mode. Figure le contains

a coded image using this algorithm coded at about 2.0 bits/pixel. In

regions of little image activity, image quality is good, but mode transition

-4-
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(a) deltamodulation

(d) DPCM

q =5%, 1 bit/pixel QIZZ. 5%, 3 bits/pixel

(b) deltamodulation

() dual mode

q =10%, 1 bit/pixel 2 bits/pixel

(c) deltamodulation
q =20%, 1 bit/pixel 2 bits /pixel

Figure 3.1-1,

(f) oversampled dual/mode

Examples of deltamodulation, DPCM
and dual mode coded images
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errors are apparent near edges.

Frei, Schindler, and Velliger (1] have suggested a dual mode
system in which the original image is oversampled by a factor of three
to permit a rapid detection of the delta to DPCM made change. The

coding logic is as follows:

(a.) Switch from delatamodulation to DPCM:

delta mode quar.ization levels

sample 1 sample 2 sample 3 Code
+q tq tq 11 1 O
+q 1q -q 1
+q -q +q 1
-q 1q +q 1 marker
@ -q +q 0 bits
-q tq -q 0
+q -q -q 0
-q -q -q o o o Q D

After three sequential delta '"ones' insert a ''zero'' marker bit and

after three sequential delta '"zeros'' insert a "one" marker bit.
(b.) Switch from‘DPCM to deltamodulation if DPCM quantizer shifts
from smallest positive to smallest negative quantization level or
vice versa.
Figure 1f contains a coded image for the oversampled dual mode
coding system for coding at two bits per pixel. The oversampled dual
mode system is superior to the simple dual mode system described
previously in terms of picture quality, however, its implementation
requirements are greater.
In summary, the oversampled dual mode DPCM/deltamodulation
image coding system has proven to provide good quality coded images at
2.0 bits/pixel. The disadvantage of the coder is the additional complex-

ity as compared to conventional 3 bit/sample DPCM,
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3.2 Orthogonal Transform Coding of Moving Pictures
Clifford Reader

The efficiency of coding a sequence of moving pictures is improved
by techniques of interframe coding which partially remove redundancy
between frames. A successful type of coding is that of conditiona! update
operating upon the differences between successive frames. Orthogonal
transform techniques have been applied to tne conditional update process
vith additional advantages over conventional systems.

Although interframe coding may be very successful in reducing
the transmission requirements for moving picture signals, the coderis
usually complex and costly, involving ¢n expensive frame memory. The
object of the orthogonal transform conditional update coder is to minimize
terminal costs. The coder performs a two stage process. The first
stage is a conventional intraframe coder, removing spatial redundancy
from single frames. This orthogonal transformation and block quan-
tization is performed over sub-blocks within the framme. The second,
interframe coding stage, then applies conditional update techniques to
the differences between successive transformed and quantized sub-blocks.
This is simply achieved by setting a threshold and updating a sub-block if
the energy of the difference signal for that sub-block exceeds the thres-
hold. A block diagram of the coder is shown in figure l. It is to be
noted that the updating process takes place with the data from the new
frame and not the difference information. This is done to avoid
problems with quantizing the difference signal which is derived from
the nonlinear intraframe quantizer. An advantage is that the memory is
refreshed with new data and not an estimate of the new data. This reduces

the problem of multiplicative error. The principle advantage of the
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interframe coder is derived from the use of intraframe coded data.
This data is thus presented at reduced rate and the memory requirement
of the coder is reduced. If the interframe coder produces a compres-
sica of M:1 then the size of the de!lays must be 1/256M frames (plus a
small amount to allow for the difierence signal energy thresholding to
take place) and the memory size will be 1/M - 1/256M = 255/256M
Frames. The overall memory (storage) requirement for the coder is
thus reduced by almost a factor of M compared with the requirement for
conventional coders.

Quantitative analysis of the interframe error is hampered by the
nonlinearity of the updating process. Qualitatively, several! observa-
tions may be made. In the absence of noise, a threshold of zero would
result in the transmission of all sub-blocks posessing a finite difference
signal energy and the interframe error would be zero. If the thres-
hold were then raised, those sub-blocks which contained the least
amount of motion would not be updated. Since the difference signal
energy is closely related to the mean squared error made when a sub-
block is not updated, it is reasonable to assume that the interframe error
should be proportional to some function of the update threshold. In the
presence of noise, this effect will be modified. The interframe error
was examined for five pairs of frames containing different amounts of
motion. Figure 2 shows mean squared error vs update threshold. The
curves of figure 3 show the corresponding compression of data achieved
with thresholding. The interframe error curve for medium motion is
presented in full detail in figure 4. Three regions may be discerned
along the curve. For the threshold set less than about 1.0, all sub-
blocks which contain motion will be updated together with some of the
sub-blocks which do not contain motion, depending upon the magnitude
of their noise variance. For a threshold set over the range 1.0 to 4.0
approximately, all sub-blocks which contain motion will be updated except
those sub-blocks which contain very little motion (for example, jast a
few pixels in one corner have changed) plus those sub-blocks which contain

no motion, but have the largest noise variance. For a threshold greater
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than about 4.0, only those sub-blocks containing the greatest amount
of motion will be updated. This region of the wave is approximated

by the straight line having the equation

ez =0.74 T - 1.63

wher~ CZ is the mean squared error and T is the update threshold.
This line does not fit the curves {(ur other degrees o’ motion very well
but must be taken as an overall measure of the error of the system
assuming an average medium motion.

The curves for interframe mean square error and bit rate
compression indicate the behavior of the system towards the different
degrees of motion. The error curves for medium, fast and very fast
motion are reasonably close to each other throughout the range of thres-
holds presented while the corresponding bit rate compression curves
are nearly linear and vary from each other only in slope. In contrast,
the curves for slow and very slow motion differ in being nonlinear and
not aligned to the curves for faster moticn. This effect is caused by the
discreteness of the sub-block conditional updating mechanism, which
becomes prominent when only a few sub-blocks contain motion and many
of those sub-blocks overlap stationary areas. The rsults for very
slow motion are further modified by noise which interacts with the low
difference signal energy, preventing correct updating.

The data available for experiments cousisted of five pairs of
frames representing a range of levels of activity and a set of four frames
containing very active motion. These frames were individually coded
by orthogonal transformation and block quantization. The Hadamard
transform was used for the five pairs of frames with quantization to 3.0
bits per pixel. The Slant transform was used for the sequence of four
frames with rates of 3.0 and 1.5 bits per pixel. 'The result of interframe
coding the five pairs of intraframe coded frames, with a threshold of 4.0
is shown in figure 5. No discrete errors are visible as a result of the
interframe coding although the images are a little blurred by the intra-

frame coding. Raising the threshold to 9.0, figure > does introduce

-13-
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Medium Motion _Slow Motion

0.99 bits per Pixel IMSE = 0. 000019 0.17 bits per Pixel IMSE = 0.000038

Very Slow Motion

0.30 bits per Pixel IMSE = 0.000044

IMSE = Interframe mean square error

Figure 3.2-5. Interframe Coding with Threshold of 4, 0.
Reconstructions of Second Frames from five pairs of
Frames Representing a Range of Activities.
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Slow motion

0.72 bits per Pixel IMSE = 0.000063 0. 34 bits per Pixel IMSE = 0.000091

Verv slow motion

0.15 bits per Pixel IMSE = 0. 000066

IMSE - Interframe mean square error

Figure 3.2-6. Interframe Coding with Threshold of 9. 0.
Reconstruction of Second Frames from Five Pairs of
Frames Representing a Range of Activities.
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visible error (although this is partially masked by the darkhair of the

subject). The discrete error appears at the edges of sub-blocks which
were incorrectly updated. Two examples in frame number 9123 are
the vertical edge visible or the subjects left hair edge and the L shaped
rick in the edge of the hair to the right of and above the subject's left
eye. Figure 7 shows the results obtained when coding the sequence oI
four frames and compares the effect of intraframe coding at 3.0 bits
per pixel (part (i)) and 1.5 bits per pirel (part{ii)). No errors are
visible in the results of part (i) but « small number may be discerned
in the second set of results. The reason for these errors is that the
higher intraframe compression to 1.5 bits per pixel lowers the differ-
ence signal energy. This is reflected in the higher interframe com-
pression achieved with these results. A slightly lower threshold would
alleviate the problem. The results also show that for the limited
sequence of four frames no noise build up is evident.

The limited results indicate that the scheme is an effective way
of coding moving pictures - the transmission rate is greatly reduced
while the coder offers economy over conventional interframe coders. It
is not possible to predict the effect of the sub-block update mechanism
in real time - it is possible that the sub-block structure may become
visible. Lack of suitable data has precluded study of this problem. The
coder does produce a non-uniform data rate. Studies of the output data
indicate that the bit stream may be smoothed by a buffer or handled by
buffer sharing techniques with at least the same efficiency as that

obtained with conventional conditional update coders.

3.3 Quantization Error Reduction for Image Coding
Michael N. Huhns
Quantization is the process of representing continuously varying
quantities by niscrete intervals. This process is nonlinear and some of
the information about the original data is irretrievably lost., The usual
restoration procedure is to choose the midpoints of each quantization
interval as the estimated values of the original data. However if it is

known that the original data are correlated and are non-uniformly dis-

-16-




i) Intrai;ame coding at 3.0 bits per pixel ii) Intraframe coding at 1. 5 bits per pixel
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Figure 3.2-7. Interframe Coding with Threshold of 4,0
Four Frame Sequence
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r tributed, then improved restorations are possible using this information.
As shown in a previous report (1), minimum mean square error estimates

of correlated data require the solution of the following equation

x=E{x|x€D}= (1)

] where x is the n-dimensional variable to be quantized, D is the particular
region of n-space into which x is quantized, and p(x) is the probability
density function of x. A partial solution to this equation ha . been obtained
for data which have a jointly gaussian probability distribution. This
solution has now been applied to the restoration of quantized one-dimensional
random signals and two-dimensional transform domain zonal quantized

images. The results reveal a decrease in mean square error in all cases.

However, in spite of the error reduction, some images exhibit a degrad-
ation in subjective quality after restoration. Hence a nonlinear error
criterion based on the human visual system and derived by Mannos and
Sakrison [ 2]has been used in place of the mean square error function.
Under this criterion a subjective image improvement as well as a
numerical error reduction are obtained.

To demonstrate the utility of this restoration procedure, a randomly

generated gaussian Markov signal has been quantized and restored. The ]
results are shcwn in figure 1. A two bit per sample Max quantization
scheme is employed to obtain the quantized approximation to the original
signal. Using this quantized signal and the statistical knowledge about
the original signal as inputs to the nonlinear estimator, the restoration
decreases the mean square error by 33%. The average improvement in
mean square error as a function of quantizing bit assignment for different

correlation coefficients is shown in figure 2. It can be seen from this

graph that,as the amount of correlation in the Markov process approaches 4

zero, then the restoration provides no error improvement. There is also

-18-
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no improvement as the number of quantizing bits becomes large and the
differences between the original signal and the quantized signal vanish,
Thus the restoration procedure represents a viable restoration technique
when the number of quantizing bits are small and the input signals to the
quantizer are correlated.

These conditions are satisfied by the zonal transform coding
technique for images. In this method the transform samples have a
gaussian distribution: each is the sum of a large number of random
variables so that the central limit theorem can be invoked. Now these
transform samples are typically quantized according to a bit assignment

such as the one shown below.
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The restoration technique must be applied recursively to these samples
since it is only capable of restoring one sample at a time. The current
best estimates of the remaining samples are then used to obtain the
estimate of the sample being restored. This is repeated for each of the
samples in turn and then the entire procedure is repeated until the
estimates converge. This convergence has been found to be rapid 2id,
in most cases, one iteration is sufficient.

The above procedure has been applied to the images in figure 3b

and 3d. Figure 3b has been coded with an average of one bit per pixel
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(a) Original Image 8 Bits/Pixel

(b) Quantized 1 Bit/ Pixel

s

(d) Quantized 0, © Bit/Pixel (e) Restored 0.5 Bit/Pixel

Figure 3.3-3. Restoration of Haar transform, zonal quantized images.
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by using a Haar transform in 16 x 16 blocks, a zonal coding bit
assignment and a Max quantizer. For the quantization and subsequent
restoration, the original image samples are assumed to arise from a

Markov source. Figure 3c is the restored version of this image, utiliz-

ing one iteration of the estimation procedure. The mean square error

is reduced by 10% as a result of the restoration. Figures 3d and 3e,
respectively, have been quantized to 0. 5 bits and restored by means of the

above technique. A reduction of 19% in mean square error is obtained in

this case. Subjectively, the restored images appear much less noisy
than the quantized images but more blurred, asis very evident in com-
paring figures 4b and 4c. Hence an error measure is cequired in which
numerical results match subjective results.

This has been provided by modeling the error measure after the
human visual system. It has been found that the human visual system is
sensitive to approximately the cube root of incident light intensities. It
is also most sensitive to middle spatial frequencies near eight cycles per
degree. Hence to apply this error Measure, an image is processed
according to the block diagram in figure 5. The (i, j)th component of the

filter function is chosen to be

Tij =(. 05+ .16525 r) exp { -(. 07125 r)l'l,1 (3)

= =(i2 + j2)1/2 (4)
Figures 4d and 4e show the results of this procedure for a Hadamard
transform, with and without the restoration step, respectively. " nere
are both subjective and numerical error improvements after restoration.
The restoration process has also been applied to a color coding
experiment. In this experiment a color image is transformed ‘o the

YIQ coordinate system and then quantized according to the bit assignment

indicated on the next page for a typical block of four pixels.
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Each pixel is hence coded with an average of nine bits. Quantization

restoration provides a decrease of 42% in mean square error in this
case and an improvement in subjective quality.

Thus data which are correlated and which have been coarsely
quantized are amenable to being restored by the techniques outlined above.
By choosing a suitable error criterion, zonal transform coded images
can be subjectively and analytically improved so that they more faithfully
reproduce the details of an original image. Further work is expected
to extend the restoration technique to DPCM and delta modulation coded

images.
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4., Image Restoration and Enhancement

Image restoration and image enhancement are two classifications
of image improvement methods., Image restoration techniques seek to
reconstruct or recreate an image to the form it would have had if it had
not been degraded by some physical imaging system. Image enhance-
ment techniques have two major purposes: improvement in the visual
quality of a picture to a human viewer; and manipulation of a picture for
more efficient processing and data extraction by a machine. Research

in both areas during the past six months is described below.

The first report addresses the general problem of restoration for
space variant aberrations. Methods are presented for astigmatism res-
toration and restoration methods for other types of degradation are out-
lined,

The three reports following are concerned with pseudoinverse
techniques of image restoration. In the first of the series a method is
presented for performing restoration in the eigenspace of the degradation
in order to avoid computational errors. The second paper describes
a restoration technique which seeks to ensure that the estimated image
pixel values are neither negative nor greater than an upper tound. In
the third paper a computational algorithm for pseudoinverse restoration
is developed. With this algorithm computation is reduced significantly
compared to conventional methods and numerical stability is also improved.

The next paper discusses the use of spline function interpolation
in the development of an image restoration algorithm, and in the next
paper the effects of non-uniform sampling of a blurred image are analyzed.

It is shown that proper non-uniform sampling actually can improve the qual-

ity of an image restoration.

Finally, a method of histogram exponentiation for image detail
enhancement is described. With this process a grey level mapping is
performed to produce an output image whose histogram follows an

exponential density,
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4.1 Restoration for Space-Variant Aberrations

Alexander A, Sawchuk and M. Javad Peyrovian

Several previous publications have detailed the difficulty of
achieving image restoration for the most general case when the linear
degrading system is space-variant. By systematically examining the
sources of degradation and using all available a priori knowledge, con-
siderable simplificatic of the problem can be achieved [1,5].

An example of restoration for images of 100 x 100 pixels degraded
by third -order astigmatic aberrations has been previously described,
and descriptions of space-variant point-spread functions (SVPSF) have
been given [1,5] . Recent progress in this area has permitted images
with astigmatism of up to 128 x 128 pixels in size to be restored on the
USC 360/44 computer system using an SVD technique. With the
addition of memory and a faster processor now underway, these capa-
bilities should be increased in the near future. Another improvement in
the simulation and testing of the astigmatism algorithm has resulted
from the use of an improved quadrature formula to evaluate the space-
variant integral

@

J(xl, xz) i/fh(xl’ xz,ul, uz) O(ul, uz) dulduz (1)

describing the degradation process. Here G(ul,uz) and J(xl,xz) are

the object and image, respectively, and h(xl, X, ,Uu ,uz) is the degrading

2’1
SVPSF. The new quadrature formula involves the expansion of

h(x,, Xps U ,uZ) into spline functions, thus eliminating artifacts in the

dig:tal sir{nulation of the imaging system and providing a better test
of the restoration method.

A test of space-variant restoration for the most difficult
third-order aberrations of combined astigmatism and curvature of field

is now in process. The theory behind the technique is an extension of

the method for astigmatism alone. The general degradation of eq. (1)
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is first rewritten with a polar coordinate transformation in the form !
o+ = 6} 1
(xr,xe) ff h(xr,ur, xe, ue) (ur, ue) durdu9 (2) :

where (xr,xe) and ur,uﬁ) are image and object polar coordinate vari-
ables. 1nis operation is digitally performed on the degraded image by
rearranging samples in memory. A simplification results because of

the circular symmetry of many optical systems, In this case, the system

aberration function are

2
x -u = (2C+D)u € cos ¢ (3a)
r r rr 6

-1 . _
Xg=Uq =tan [Dure:r sin 69/1 +(2C+D) ure:r cos ee] -g(ur) (3b)

where C and D are the astigmatism and curvature of field coefficients
respectively, and €. and € are exit pupil variables. The SVPSF's
derived from eq. (3) and limiting cases of C =0 and D =0 can be easily
derived [ 1].

By observing that the radial blur of eq.(3a) is a function of radial
coordinates only, and that the 8 blur of eq.(3b) is a slowly varying

function g(ur), the next step in restoration is to rewrite eq. (2) as

H(x_, %) y‘fh(xr,ur,xe-ue,g(ur))O(ur,ue) du_dug (4)

to emphasize the dependence. If D =0 in eq.(3) the degradation is pure
astigmatism without curvature of field and the blur is entirely radial

with no blurring in 6,

Defining a Fouricr transform of J(xr,xe) in the Xq variable by

e

[ o]

ll._E

Fix ) =fJ(xr,xe) exp(-j2mixg ) dx, (5)

-®

i
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the transform of both sides of eq. (4) is taken to obtain

«©

j(xr, \) i[fo(ur, ue) ;(xr, u, A, g(ur)) exp(-jZn)\ue)duedur (6)

where h is the transform of h in Xqge Grouping terms containing u

on the right side of eq. (6) enables a transform in this variable to

6

be evaluated. The resulting transformed function 5(ur, A) is given

by

a3y

_O(ur,)\) =f0(ur,ue)exp(-jZﬂ)\ue)dug (7)

and the reduced system equation obtained from eq. (4) is

J(x_,\) =ff{(x,u.x) B(u_, ) du ' (8)
by / 1 r r r
where
h(xr.ur.l) = h(xr.ur. l.g(ur)) (9)

is rewritten as a function of three variables to show explicit dependence.
This derivation shows the procedure to be used for the astig-
matism and curvature of field restoration. Following a polar coordinate
transformation, a Fourier transform in xe as expressed by eq.(5) is
performed to partially decouple 6 blur as a slowly varying function of
g(ur). The reduced system is then given by eq. (8), and an estimate
of O(ur, A) is produced by singular-value decomposition (SVD) techniques
[1)for each separate )\ by techniques similar to that used for astig-
matism alone. Efforts will be made to reduce the computational effort
required in this part by using the known variation of h(xr,ur. }) with ).
After the entire O(ur, A) has been obtained, a .eries of one-dimensional
inverse transforms in x is taken to find O(ur, ue), and an inverse polar

coordinate distortion is used to get G(u ,uz) as the final restored object.

1
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This procedure, while requiring large capabilities in computing and
storage, is the only method for doing restoration on images of even
moderate size. The general four-dimensional space-variant blur of
eq. (1) is effectively reduced to a set of space-variant two-dimensional
problems whose point-spread functions depend in a well-behaved way on
X

Following tests of this procedure, future work on this problem
will include modifications for noisy data and an analysis of sampling
problems and approximations in performing a continucuis space-variant
restoration by computer, The analysis as presented is for a general
aperture, although additional simplification may be possible for other

specialized aperture shapes.
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4.2 Image Restoration in the Eigenspace

Harry C. Andrews and Monty Adler

e Ul n i i Sy . g e e sy

of the Degradation

It has recently been noted that there are certain mathematical

properties asscciated with point spread function blur matrices that

make digital image restoration extremely attractive in the eigenspace

of the degradation [1]. Consider the separable space variant imaging

model of

G:=AFB

(1)

where G is the matrix of available image data points and Fis the

array of object data points which are of interest for estimation. Usually

both A and B, the column and row blur matrices respectively, are

nearly singular. Penrose [ 2] investigated this model, without regard

to imaging systeins, and suggested the pseudoinverse restoration which

provides an estimate of the object as

-A'cB'

IR

(2)

+ + ;
where A and B are Moore- Penrose pseudoinverses respectively

[ 3. The blur matrices A and B are componentwise positive and

experimentally appear to be oscillatory [ 4,5), The oscillatory property

implies that the eigenvectors associated with decreasingly smaller

eignvalues have increasingly larger zero crossings. Examination of the

pseudoinverse solution of eq.(2) in eigenspace, reveals that the solution

can be cast in the form

~ + T T_ T
=V A A% U
E a?ga_—b_ ~b
where
A=UAV
= ~Fxa-a
and
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All matrices are orthogonal with _I\a and _{_&b being diagonal. The
matrices_x_’\: and_lq) are also diagonal with non-zero entries being re-
ciprocals of the entries of_l\a and_{_\) respectively, except for zeros placed
on the diagonals of_/\: and _/\Z for small (approximately zero) diagonal

entries ofi\a and_l\b. By noting that

(5)

where

T

a=U_ GV, (6)
it is found that the a matrix is the image G represented in the eigenspace
of A and B. Because of the oscillatory properties of A and B, con-
tributions to F associated with large )\i-l coefficients have correspond-
ingly large zero crossing eigenvectors. These eigenvectors are then
correlated with the image G which tends to be slowly varying; and as
such, the correlation tends to zero. But those eigenvalues of least con-
fidence, due to uncorrelated noise and computational error, are
associated with eigenimages of many sign changes, which in turn correlate
to zero with G. Consequently one encounters the happy circumstance
of computational error not being as critical as could be as a result of
effective zero correlation of the image G with the corresponding com-
putationally questionable eigenvalued ~igenimages. Thus greater success
can be anticipated with this pseudoinverse approach for image restoration
than for restoration of signals with correspondingly higher frequency
content. Restoration algorithms based upon these observations are

currently under investigation.
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4.3 Pseudoinverse Method of Bounded Image Restoration

Harry C. Andrews and Monty Adler

The space variant separable imaging equation given by

G=AFB W

has been investigated from a restoration viewpoint in previous reports.
With A and B being the column and row blurs of the object F respectively,
the image G will be used as a means of estimating F, Traditional

solutions to this problem utilize the pseudoinverse in which

-A'Gp’ (2)

I

and _é+ and §+ are pseudoinverses of A and B respectively. Usually the
blur matrices are nearly singular. Unfortunately, although the
pseudoinverse solution provides the best estimate of F' in a least squares
sense for a minimum norm f, (1. e. f‘ minimizes ||_1'7“ || ), the estimate
does not take advantage of all a priori knowledge. For example, the
solution ignores the fact that the elements of F are intensities, which
cannot go negative (therefore positive restoration), and which cannot
exceed some physically realizable total light energy (therefore bounded
restoration). To utilize the positive bounded restoration model the
»seudoinverse solution of eq.(2) is suggested as an initial condition to

a nonlinear programming algorithm to guarantee positivity and upper
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boundness. Towards this end, consider the pseudoinverse solution

T
B=U AV, (4b)

The objective function for normalization purposes will be to minimize

A 2 A
||§-§'| subject to the bounded restoration constraint on . Thus

(5b)

2 2 2
w=[al® lE-ElI7 B (6)

Therefore, for analysis purposes one can choose to minimize I I-F I
However, since the pseudoinverse is simply being used as an initial
condition and since the eigenspace of the degradation is a useful domain
for restoration processing, the variables of optimization are restricted

to be diagonal in the eigenspace domain. Thus the estimate

- A
Ly =l,aga—a =a --b—Ab 6bU

a2
is found by adjusting the gadiagonal matrices such that || F-F ||
minimized and F is componentwise positive and bounded. This reduces
2
the restoration problem to a 2K variable problem with N positive

bounded boundary constraints. Here K is the :number of non zero




eigenvalues retained in the _IE‘ estimate, Since the solution is in the
eigenspace domain, the effect of each 6‘1 variable is felt throughout the
entire estimated object F, and as such is much more effective than
simply constraining a component entry (pixel) of f itself. A Fiacco
and McCormick [ 1] programming algorithm has been utilized to adjust
the weights in degradation eigenspace to obtain positive bounded
restorations with som.e success. While this work is still in progress,
it appears that colivergence is very rapid due to the pseudoinverse
starting point whereby it is meant that an iterative pseudoinversion

technique is developed to obtain F_, until the positive bounded con-

K
straints are violated at which time the nonlinear programming algorithm

. e s th )
{5 call to correct for the near singularity in the K~ pseudoinverse

solution,

Reference
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4.4 A Fast Pseudoinverse Image Restoration Algorithm

William K. Pratt and Faramarz Davarian

It is often possible to model an image degradation process by the

vector equation

S=P1%8 (1)

where g denotes a column scanned M x 1 vector of physical samples of
the blurred image; f is an N x 1 vector of column scanned points in the
ideal image field, B is an M x N blur operator matrix representing

a convolutional blur; and n denotes an M x 1 vector of observation noise
or uncertainty. For this mode], the ideal image vector can be estimated

by pre-multiplication of the observation by the generalized inverse,

13-, of the blur matrix, Thus,
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where lé- is an N x M matrix that can be computed by

if B is of full column rank, or can be computed by

B = (B B)

B =B

if B is of full row rank.

square error,

with pseudoinverse restoration:

may be unstable as a result of the usual ill conditioning of the blur

minimum norm estimate.

T

T

-1 _T
B

T. -1

(BB")

The solution of eq.(2) is a minimum mean

(2)

(3a)

(3b)

There are two major difficulties

if the noise level is high, the solution

matrix; and, computation of the generalized inverse and restoration by

eq. (2) is usually a large task. The former problem can be avoided by

restoration constraints; consideration is given here to efficient

compaitational techniques for pseudoinverse restoration.

ment of the algorithm, consideration will be initially limited to a one

Fast Pseudoinverse Algorithm. As a simplification in the develop-

dimensionnl model in which the ideal image is represented by quadrature

points at its Nyquist rate and the blurred image is sampled at the same

rate.

Then, let the impulse response be represented by the L x 1

vector h.

Jool
H

The blur matrix of eq. (1) then

by

h(L)
0

h(L) .

h() 0 .
. h{l) .
0 h(L) .

h(l)

assumes the form

(4)

In this case the number of ideal image points and the number of observed

image samples are related by
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N=M+ L-1 (5)

Now, let two vectors f

T and g, be formed by selecting the center
portions of f and g, respectively. These truncated vectors are obtained
[ by dropping L-1 elements at each end of the appropriate vector by the
1
{ operations
(K)
=8 = N- =
—fT _ZN K =N-2(L-1)
(R)
=82 = = =
,- 81 =52, R =M-2(L-1)
where
] =1 K L-]
e e et ., -——\_
3 ! ]
P l l
(K) 1 [}
S2 = } K
== 0 ! I ! 0
J - ' -K 1 —
] ]
L ! ' =
; for J = K+ 2(L-1). Figure la illustrates the relationship of all vectors
for N = 9 original vector points, M = 7 observations, and an impulse
response of length L = 3,

Suppose, now that the data sequence f,_ is discretely convolved

T
with the impulse response sequence n yielding the output sequence q

as defined by the vector equation

o
n

o
=

I (6)
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(b) discrete convolution

Figure 4.4-1. Examples of one dimensional sampled continuous

convolution and discrete convolution.
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where

hy o . . . 0
h(2) h(1) .
D= | h(L) h(L-1 0 (7)
0 h(L) h(1)
0 s a & h(L) |

Figure lb illustrates the relationships between the vector sequence for
discrete convolution. An estimate of S-T can be obtained by premultiplying

the output vector q by the generalized inverse of D. That is

f,=Dgqg (8)

Referring to figure 1, it is observed that the elements of g, are

identical to the center elements of q. Thus,

_ (R) _ (R)
gr = (82 Jg =5z g
while the remaining end elements differ in general. Now, let a matrix

W be defined which operates on the physical sample vector g to produce

an approximation to the output vector q for discrete convolution.

1= We @

The structure of W will be derived later. Then, an estimate of_f_T

is formed by
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By this procedure an estimate of the center part of the image vector
f can be obtained by use of the generalized inverse operator _D-rather
than the generalized inverse operator §-. The advantages of the
former procedure over the latter are that, in the absence of noise, the
solution obtained with 9- is unique and exact, whereas there are an
infinite number of feasible solutions for the B model. Also, with the
Q- operator, it is possible to perform the restortion by Fourier domain
processing quite efficiently.

Consideration will now be given to the structure of the weighting
matrix W. The objective of weighting is to express the vector q in terms

of the elements of the observation g. For the example of figurel,

g{l) = g(1) - h(3)f(1) - h(2) {(2)

q(2) = g(2) - h(3)£(2)

q(m) = 4(m) 2<m< M-2 (11)
q(M-1) =g(M-1) - h(1)f(N-1)

q(M) = g(M) - h(2)f(N-1) - h(1) f(N)

Since the values of f are not known, the correspondence of eq.(ll)
cannot be made directly. However, by making an assumption on the

continuity of the original image vector that

f(1) = £(2) = £(3)

and

f(N-2) = f(N-1) = f(N)

then it is found that
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~ . g() hi)
q(l) = 3

g(2)[ h(l) + h(2)]
S

q(2) =

where S = h(l) + h(2) +h(3), Similar equations exist for :{(M-l) and

E(M). This procedure can be generalized for any size vectors, Also,
more complex prediction algorithms may be employed. Figure 2
illustrates the expected mean square restoration error of_fT for

various prediction algorithms as a function of the correlation of elements
of f under the assumption that f is a sample of a Markov process with
correlation factor p. A first order predictor provides a significant
improvement over the zero order predictor, and for high correlation
factors even surpasses the estimate for the underdetermined model.

The efficiency of the computational algorithm is based upon the

use of a circulant blur operator defined as

=
h(l) 0 . . .+« « 0 h(3 h(Z)T
h(2) h(1) j j
. h(2) h(L) .
. . 0 h(L)
c=| BL) h(L-1 : g
. h(L) . .
0 0 . - « « 0 hp o
0 0 : « « .+ 0 h(2) h(
b —]

Then, for the noise free case, it can be shown that
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R

M q -T

]
= E '

[ 0 J-R
i J-M E
[ And hence, the image estimate may be obtained by

R f ~
t =T q ' M
| : g
F J-R § 0
I 0o | (I-M

where 2- is the generalized inverse of C, which is also circulant. Since,
the two dimensional Fourier transform of a circulant matrix is of

diagonal form, it becomes more efficient to perform the computations

in the Fourier domain, The Jz matrix operations associated with the
pseudoinverse multiplication can then be replaced by J scalar rnultiplies
plus 2 J long operations required for the fast Fourier transformations.
While the fast pseudoinverse algorithm generalizes quite easily for two

dimensional image fields. Application of the technique to image res-

toration is now underway.




4.5 Spline Function Image Restoration.

Steve Hou and Harry C. Andrews

For an estimated object the continuous - discrete imaging

system model can be represented as the discrete matrix equation

(A+YB) ¢ = d

A ~

T

(aTa+vB y

1 XBy) e=Ag

using cubic B spline interpolation for the estimated object. In

eqs. (1) and (2)

o«

A z[ffhij(g,x) Sk(C)SL(K) dCdu]

-

o«

g—f[fsk ©s_" () dc]

-0

st[fs’ n) Sn (u) du]

The size of the image is I x J and that of the interpolating grids for the

estimate object is M x N, The term Sk(C) denotes the one-dimensional

cubic B spline function centered at grid point x, and d and c are

k

column vectors of the image gij with unknown coefficients ¢, , arranged

k1.
in a lexicographic order. The symbol ®designates a Kronecker (tensor

or direct) product between two matrices [1] . Both matrices




ATA
A=A A
and
= B
B Bl®_2

are real, symmetric, non-negative definite, and the diagonal terms
are larger than any off-diagonal terms. Furthermore the entries of A
are positive. Making use of the following equal energy constraint

on the imaging system

I

Z i b (C,%) = 1

i=1 =1

for all { and x, A can be shown to be a Markov matrix (1],
Ultilizing the special properties of cubic B spline function one

can further show that

2 1
-9 32 -9 2?. 0
: 2-‘2)32-22..
= — 1 -9 32-9 [ ] ®
=il 6A3 1 ® o o * e o o
e o o °
® o o L4 LA
e o o o o
e ¢ o o
0
s -

Thus §1 is a banded matrix of seven element wide. Also, 'El is a
Toeplitz, almost cyclic and strictly diagonally dominant matrix with
the properties mentioned previously. The matrix B_ has the samne

2
entries as l31 except they may have different size. Hence §1 and EZ
are positive definite matrices [ 2],
Iterative methods have been formulated for solving the unknown

coefficients c in eq.(2)., The matrices A and B usually have very large

dimensions in an image restoration problem, hence one is fa ‘ed with
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the problem of inverting a matrix of very large dimension. It is

known that the number of multiplications in inverting matrices grows as

a nonlinear function of the dimensions of the matrices being inverted.

Therefore, for large dimension, matrix inversion is a non-trivial operation

even with a modern digital computer. For this reason it is assumed

that the point spread function is separable i.e.

h . (C,n) = h(C) h, () (3)
1) 1)

for all ¢, nand i,j. Now matrix A becomes

A=PQO®F (4)
where
P_- _[hi(g) 5, () d¢ P - th(K)SL(K)dK) (4)

Then the following iterative equation can be derived from eq. (2)

by making use of eq. (4).

(0) (i-1), & +

=€ - YA +B) CTVELA, (5)

Where C is the ....crix of the unknown coefficients Ck! » + designates
the pseudoinverse [ 3], and

c-ptgp?
X Yy

=PTP

=1 X Tx

A, =P P

-2 Y~y

~ e A

B, =284,
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Work is in progress to determine the unknown parameter Y
(0<Y<1) from the iteration procedure of eq.(5) and the constrainted

iterative solution of C imposed by the positive restoration and equal

energy constraints,
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4.6 Nonuniform Sarapling of Observation Space

Faramarz Davarian

The fundamental model describing the image restoration pro-

blem under the assumption of a space invariant blur function is given
by

o«

fo(x) = /fI(a)g(x - a)da (1)

-

Here, fI(a) represents an ideal image line and fo(x) an observed image

line. To restore fI(a) numerically, the above integral equation may be

discretized as follows

N

£ (x)) =E ci; fBix; - ) (2)
j=1

where fI(j) are uniformly spaced nodes of the quadrature formula,

fo(xi) are samples of the observation and cij are quadrature coeff.-ients.

Equation (2) can be represented in vector form as
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(2)
where H

B..=c glx -]
ij Ci_)g‘xl j)

The problem of image restoration has now been reduced to a
regression problem; given the observed vector_fo and the blur matrix
B, a suitable e timate of_fI must be found.

If in eq. (¢} matrix B has full column rank (M2 N), the model

is called overdetermined. Under the assumption of full column rank

the pseudoinverse of B is defined to be (1]

and the estimate of f is given by

1

! ;

4= B

Condition Number. The condition number of a system is a measure

of the affect of an input perturbation (input noise) on the output of the
system. Assume that the observed image function has been perturbed
by observation noise by an amount of 8{. The error in the estimate of

I
f,is bounded by (2]

lagl ol

C
TgT B g

(3)

where CB is the condition number of B and is given by

cg = Il . 18
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From inequality (3) the importance of the condition number becomes clear.
A large condition number results in numerical unstability; a small
observation error will cause a large error in the estimation of the ideal
image. 4 linear system with relatively large condition number is often
called ill conditioned.

Equally Distanced Samples of Observation. Assume that the

original image is sampled at points 1,2,...,N, and the sampling
interval has unit length. Suppose the sampling period for the observed
image is 4 x(Ax <1) and the length of the degrading function is L; g(t) = 0,
if | t| >L/2. The relationship between the number of observed samples

M and the number of original samples N is then given by

N - L
M = b x + 1
For a given N and L, M should be chosen to minimize the
condition number for B. Consider the set of blur matrices EM for
which M is sequentially set equal to N,N+1, N + 2, ...,etc. and the

correspond ng condition number is C Figure 1 contains a typical

plot of the condition number as a funcltBiI;An of M. Usually the shape of
such a condition number curve depends on the variance of the blur
function. In general, the curve does not decrease monotonically. The
curve assumes its peak when M = N, and as M grows the curve tends to
decrease with some periodic upward jumps. The period is related to

4 x and the fact that for some integer n, ndx =k (in some cases suchn
may not exist) where k is an integer. The period of the jumps is usually
a function of n and N. For very large M, the curve tends to increase, but
the amplitude of the jumps decrease.

One method to improve upon the condition number of B is non-
equal spacing of the observed samples. It is clear that the middle points
of the ideal image line contribute to more points of observation than the
points which are closer to the line boundary. If the space limited
degradation function exists only on an interval of length L, a typical

pixel in the middle would contribute to all the points in the observation
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image line which lie in an interval of size L. On the other hand the
two samples at the very ends of_fI only contribute to two samples atthe
end points of_fo. This simple argument suggests that non-uniform
sampling of observed image would bring out all the information needed
to easily reconstruct the original image.

The ill-conditioning associated with uniform sampling of a blurred
image have been examined experimentally. In the experimental model
a Gaussian blur function has been employed with 16 equally spaced ideal
image samples on an interval of length 15,. The variance of the
Gaussian blur function is unity and its space limited length is 6 pixels,

For 16 equally spaced samples of the observation, the condition
number is about 300, 000. When the number of observation samples in-
creases, the condition number tends to decrease. For values of M
above 50 the condition number stays under 2,000, but it never becomes
much less. As mentioned before EB is not a monotone function, i.e.,
for some values of M it may increase by increasing M. For a suitable
non-uniform sampling of the observation, the condition number becomes
about 2,000. The different methods to find the locations of the non-
uniform samples are discussed in the next section. Note that there is
an advantage in non-uniform sampling with M = N as compared to uniform
sampling with M 2 N, since for the first case it is necessary only to
invert matrix B itself whereas for the second case, §T§ must be

inverted,

Spacing of Non-uniform Samples. The two end points of the
observation line play an important role in the sampling process; the be-
ginning and the end points of the observed line are essential to enable
the system to reconstruct the object. To simplify the explanation,
consider the left half of the observation only. Starting from the beginning
of the left half line, call the unit distance points of the observation
X0 Xpse 00 etc, as shown in figure 2a. In the same manner, the points of
the object line are denoted as YyrYoreee etc. The problem then is to

estimate points YyrYpre .o etc; using N samples of the observed intervals.
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Figure 4,6-2. Relationship between object and observation

line sample=.




Interval [ x

l.xz) is the only one containing information about

[yl,yz) . The interval [x .xz) , also, contains information about the

1
larger interval [yl,y3). Now, consider the interval [yz.y3) . There

are only two intervals of the observed line which can contribute to

303 X 2 *3) -

’ ’ ’ i t i 5
[y3,y4) , only [xl xz), [xz x3) and[x3 x4) of the observation contain
information about [y3,y4) . This simple argument can be generalized

5 X In the interval

the restoration of [yz,y ) %,) and [ x

to a typical unit size interval [yj,y. ). There are at most LL - 1 of the

j+l
(L is the length of the degrading function) observation intervals which

could contribute to reconstruction of [ yj.y,+ ) The number of intervals

jtl
relating to [Yj'YjH) equals j if j <L , and equals LL -1 ifj2 L -1

(assume yj is on the left half line). Suppose for every interval of the
ideal line it is necessary to have k samples of the cbserved line. For the

first interval [yl.yz), all these k samples must lie on [ x, xz). For the

1

second interval [yz,y3), half must lie on [ x_, x3), and half on [ x

1 2* X3)

l.ikewise, one can consider the sample distribution for the ‘ther

intervals.

Figure 2b demonstrates the method. In the table, the number
of samples which are needed to reconstruct the corresponding ideal
line interval is listed before each observation interval. Here, 16
samples of the object line are uniformly placed on an interval of size
15, and the size of the degrading function is 6. The length of the obser-
vation line is, therefore, 15 - 6 = 9, Three samples are placed on the
first interval, two on the second, and one is placed on the third, The
same distribution is considered for the last three intervals. The middle
of the line is sampled exactly as the object line.

Figure 3 contains a blurred picture and its restoration using the
technique described in this report. The restoration is exact since it has

been performed in the absence of noise,




il

Observed Image Deblurred using nonuniformly

spaced samples.

Figure 4.5-3. Image reconstruction using nonuniformly

spaced samples.
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4.7 Histogram Exponentiation

Francis Kretz

In the field of image enhancement simple nonlinear amplitude
transformations are quite useful. For example, the technique of histo-
gram equalization [ 1-3] has been shown to significantly improve the
detail of low contrast images such as X-ray and Earth Resources Satel-

lite (ERTS) pictures.

Examination of detailed and well-contrasted pictures reveals that

their histograms are approximately exponential with a black level peak.

On the other hand poor quality images usually have a non-exponentially
shaped histogram. For this reason an investigation was made into methods
of "histogram exponentiation'" for image enhancement.

Probability Density Function Transformations. Let X denote a

random variable whose range is [ 0,1]; p(x) , xc[ 0,1] be its probability
density; and Fx(x) represent the distribution function assumed continuous.
Also, let f(*) be a continuous monotonically increasing function and

let Y =f(X) be an output random variable with distribution given by

Foiy)= P {Y=yl=P {f(x) =y]

Since f(¢) is invertible

_ -1 =l
Foty) = P X2 7y} =F (]

u




Thus, for a given input distribution Fx(x) and a desired output distribution
Fy(y), it is possible to determine the necessary transfer function f(X).

In the discrete case the transfer function can only be determined approx-
imately. If the transfer function is chosen such that Fy(y) is uniform

the process is called histogram equalization.

Histogram Exponentiation. In the histogram exponentiation process

the transfer function is selected so that the output probability distribution

is of the form

P (k) = A exp {-a(k-1)}

fork =1,2,...,M. The parameter "a'" controls the shape of the exponential
function. With a=0, the result is histogram equalization,

Figure 1 shows the effect of histogram equalization and exponentiation
on an ERTS picture. The equalized picture in figure 3b is subjectively
improved compared to the original. And the exponentiated pictures exhibits

further improvement.
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Figure 4.7-1. Earth resource picture
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5. Image Data Extraction Projects

Image data extraction describes the collection of projects con-
cerned with the detection of features within an image and methods of

measuring these features.
The first report describes an investigation into a method for image

reconstruction from transverse-axial density projections of a solid object.
The method utilizes a Fourier transform process defined on a polar raster
which obviates the need for interpolation in the transform domain.

A new project described in the following report is based upon the
development of nonlinear optical processing elements. These elements are
constructed from halftone transparencies which are mathematically compu-

ted and recorded by a scanning microdensitometer.

5.1 Fourier-Bessel Method for Transverse-Axial Reconstruction

Dennis G, McCaughey and Richard P. Kruger

Transverse Axial Reconstruction implies the reconstruction of two
dimensional cross sectional regions of an object or signal from knowledge
of a discrete number of one dimensional projections. Application areas in-
clude analysis of electron microscope imagery [1],medical transverse axial
tomography [2],and radar signal analysis [3]. Algorithms for this pur-
pose may be divided into three general categories : Algebraic (4], Con-
volutional [2],and Fourier Transform domain [1] methods. The present
discussion will be limited to the latter method.

Transform Processing Techniques. The Fourier method of reconstruction

depends on the fact that the Fourier transform of the projection is identical

to the corresponding central section of the Fourier transform of the density
function (5]. When the Fourier transform operation is performed by a digi-
tal computer, the transform of the original density is obtained at discrete 1
points in frequency space in polar coordinates. Since few of these points will ;
correspond to rectangular coordinates required for the inverse transform
operatior, interpolation is required. Also, since the forward or inverse dis-
crete Fourier transform operation produces the original function at this sam- :
ple point to within the truncation errors of the machine used, * it would seem

. A
reasonable that some, but certainly not all, of the artifacts present in the i
4

* It can be shown that the forward-inverse sequence of Fourier transform

operations produce the original function exactly at the sampling points with-

out consideration of the sampling theorem. However, this is not to imply

that the sampling theorem is without importance.
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reconstructed image are due to the particular interpolation process used.
Other artifacts in the reconstructed cross-sectional image result from
Gibbs phenomenon, high frequency components (due to edge effects) present
in the estimated Fourier coefficients, and possible undersampling, While
much has been said with regard to the sampling theorem concerning image
degradation and resolution [18,19] more effort is necessary to determine
the relative importance of the various interpolation methods in the area of
image degradation. Notwithstanding the lack of knowledge concerning the
relative importance of interpolation as an important contribution to image
degradation, it would seem desirable to employ an algorithm that utilize
the Fourier coefficients directly on polar coordinates., Crowther De Rosier
and Klug proposed such an algorithm using the Fourier-Bessel transform
{21, Crowthcr et. al, [16] have employed this algorithm in the recon-
struction of images obtained in electron microscopy with reasonable re-
sults, However, their format was such that projections were not obtained
at evenly spaced angles which necessitated an interpolation process to fill
the polar raster. In developing an algorithm it is reasonable to assume that
projections should be available at evenly spaced angles to avoid this intcr-
polation,

As a basis for the analysis let F(R, 6) denote the Fourier transform
of the projection at angle f and f(r,®) be the tomographic section in polar

coordinates, The following then results (8]

2m " ®
f(r,®) = j J’ F(R, 8)exp(-21)rR cos(f-p)RdARdH
0 0

Note that

cos (B-0) = sin(B-p+1/2).

exp(ja sin x) = E Jk(a) exp (jkx)
k= -

where Jk(a) is the kth order bessel function of the first kind. By inserting

these two relationships into eq.(1) and rearranging the order of summation




and integration it is possible to obtain

™ 2T @

f(r,®) = Z jkj J' F(R, 8)J, (2R r)exp(jk8)RdRdS exp(-jkv)  (2)
k== 0 0

If fk( r) is defined as

21 ®
£ (1) = jkj f F(R, 8)J, (2 TRr)exp(jk-)RdRAP (3)
0 Jo

it is possible to obtain the Fourie - series expression

@

f(r,9) =) £ (r)exp(-jro) (4)
k=-

Note that eq.(4) is indeed a Fourier series for

1 T
f(r) =— f(r, ®)exp(jkep)dp (5)
21 o

If constraints to discrete angles evenly spaced over (0, 27) are assumed,

eq. (4) becomes a discrete inverse Fourier transform. Knowledge of fk(r)
will then permit an exact reconstruction of f(r,®) along radii equally spaced
over (0, 2m). The factor F(R, 6) is in general not available for all R and 6
since projections are available for only a discrete set of angles and because
a DFT on each projection produces the transform only at discrete fre-

quencies. Therefore Fs(r, f) is the 2-D sampled form of the Fourier trans-

form F(R, 6) given by

.1 -
F_(R,8)= Z5ER 2 F(iR, Z3%) 6(R-ifR, 8- £22)  (6)
1= 1=0

N N

|
|
|




where N denotes the number of projections and I represents thr. nmber
of points in each projection. Inserting eq.(6) into eq.(3) one obtains an

estimate of fk(r) termed fk(r) in the form of a Riemann sum

I-

.—-

ZnA N-1 Znn

F(R. PN )'kJK(ZTT Rir)Riexp(ijTm/N) (7)
i=0 n=0

fk(r)

e

where i AR has been replaced by Ri' The estimated reconstruction is
then

f(r,9) = ) f (r)exp(-jk (8)
k=-o

Since f(r,q is a spaced bounded continuous function, F(R, 8) is an ana-
lytic function [2] and thus eq. (7) always exists, Equation (7) is in

reality rectangular integiation and if AR and 21 /N are small, fk(r) is an
accurate estimate of f (r) The ability to estimate the tomographlc section
f(r, Ppwith f\r, ®) is thus limited only in the accuracy of the f (r) It can

be easily shown that eq. (8) can be expressed as

e = Dk ZnAR Z Z F(R,, ZTI;“ ) I (2R )R expljk2mn/N]exp( - jkp)

i=0 n=0
® I-1 N-1
kj-k 2MmAR 21

+ Z 1 TN F(R,. 5, (2rR, ;PR expl - jk2mn /N exp(jke)

k=0 i=0 i=0
(9)

where
2 k =
€ =
k 1 kK#0
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By similar means it can be also shown that

iI-1 N

-1
f(r,9)= 2Re ZZ“AR FR,, i}‘") T, (2R, )R expljkzmn/Nexp-fk(® -1/2)]

o
i
o
o ]
[}
o

(10)

where jk is replaced by exp [jk\n/Z)]. Equation 10 can be computed by two
fast Fourier transform operations followed by a Bessel function weighting
operation and a final fast Fourier transform operation. Current results
indicate that test images can be reconstructed from 32 projections with

64 sample points in each projection in a few seconds on a standard comput-
er, An example of a reconstructed disk is shown in figure 1.

Removing the interpolation process results in not only a significant
reduction in computing time but some insight into a quantitative measure-
ment of the accuracy of the algorithm through eq. (7). Furthermore, re-
taining a polar format produces an algorithm with the highest resolution
near the axis of rotation. Upon first consideration this may seem a disad-
vantage, however, a higher resolution may b= obtained in a region or interest
simply by centering the axis of scan rotation in that region. This may result
in the need for fewer projections.

" This investigation would seem to indicate that the Fourier-Bessel
method has several advantages over the more conventional transform method.
It is still necersary to determine the quality of the estimate fk(r) and to de-
velep methods to improve this estimate., It was noted earlier that eq. (7) was
in reality a rectangular integration formula. A simple method to improve the
accuracy of i (r) would be toutilize a trapezoidal formula. This would require
no increase in the number or sample points. Also if the projections are sam-
pled at the Nyquist rate (implicit in any method), it can be shown that the func-
tion can exhibit no more than one zero crossing between the two adjacent sam-
ple points. This would imply that a trapezoidal formula would be reasonably
accurate. The algorithm also may be extended to images of much higher res-
olution since fast Fourier transform algorithms are certainly applicable to
higher dimensionality than currently used. The main effort would be directed
towards calculating the Bessel functions of higher order. No particular dif-

ficulty is anticipated, since suffi ciently accurate large argument approxima-

tions are available {9] along with a recursive algorithm for small arguments

(10].
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Figure 5.1-1.

Disk reconstruction from

32 projections.
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5.2 Nonlinear Optical Image Processing With Halftone Screens

Stephen R. Dashiell and Alexander A,Sawchuk

Under ordinary circumstances optical image processing systems -
are capable of performing only linear operations on input images. There
is a large class of nonlinear operations which could be of great value if
they could be easily performed in an optical system. Among these are
homomorphic filtering (1], histogram equalization, level slicing, high
intensity pass, low intensity pass, intensity band stop, and others L2,

Kato and Goodman [3] have successfully utilized commercially
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available halftone screens to perform logaritimic and exponential transfer
functions in an optical system, thereby allowing them to filter a multipli-
cative noise component with much greater success than if ordinary linear
filtering had been performed.

If diffraction orders of the halftoned image higher than the on-axis
zero-order diffraction component are used, and if specially made halftone
screens are available, nonlinear transfer functions considerably more
complex than the monotonic logarithm and exponential can be obtained.

To understand how a non-monotonic transfer function might be ob-
tainable, consider first the Fourier transform of & rectangular array of

opaque squares of side b and center to center spacing a, given by

2 =
F{l (x’ y)} = b(fx, fy) -niz Z_@ m;@ !T:—n6(fx-%)b(f}'-%)Sln(n:n)sln(nabm)

(1)

where m and n are numbers identifying the diffraction order impulses in
the spatial frequency plane.

The transmittance function assumed by eq. (1) is typical of what
would be obtained if a constant transmittance were halftoned and photo-
copied on high contrast copy film. The presence of the sine terms indicates
that non-monotonic behavior could be expected. This becomes more evident

in the special case where a (0,1) order specified by m=1, n =0 is selected.

In this case eq. (1) reduces to

F{t(X, Y)] (0’ l) = "'TaT_ 51“(%9_)6 (fx! fy) (2)

Inverse Fourier transforming this expression and squaring to get the out-

put intensity yields

2
_ . 2{thb
Iout © =T L (a ) (3)

as the final intensity output.
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This result is useful because the value of b is a function of
the input intensity to the system, or equivalently, is a function of the
density of an input transparency. In operation, the Fourier transforming
and inverse transforming are instantaneously performed in a coherent op-
tical parallel processor [ 5], and selection of the diffraction orders is ac-
complished by simple spatial filters, These filters are chosen to pass the
low spatial frequency information in the original, thus desampling the half-
toned picture while the nonlinear operation is performed.

To illustrate how an operation such as level slicing could be per-
formed using this first diffraction order, a halftone screen wa3; niade by
photographing crossed Ronchij rulings. The resulting screen had trans-
parent squares on a partially transmitting background. The sides of the
Squares were one-half the distance between squares. The subject trans-
parency was then photographed through this halftone screen, and three dif-
ferent regions were then present on the copy film after development., In
the first region, where the subject was sufficiently dense that the copy film
did not expose even through the clear squares, there were no dots or b = 0,
In the second, where the subject was less dense such that the copy film did
expose through the clear squares, but not through the darker background,
the dot parameters were b = a/2, Third, where the subject was still less
dense such that the copy film exposed through the clear squares and th rough
the background, the parameters were b - a.

leme czases b=0andb=a give IOUT = 0, however b = a/2 yields
IOUT =a’/m” 40, Thus, only the range of densities which gave dots appear
in the output and densities above or below this range do not appear. This has
beer experimentally verified by slicing a picture into 6 different levels, us-
ing a single halftone screen but varying the exposure time on the copy film.
The position of the sliced level is controllable by varying exposure while
the width of the level is fixed by the density difference on the screen be -
tween the clear squares and the darker background. This technique for ob-
taining nonlinear transfer functions is not limited to level-slicing and other
simple functions, Using digitally produced halftone screens with 2ppropri-
ately selected density profiles, more complex operations are possible,

Although these preliminary experiments in nonlinear processing in-
volve photographic proces sing and coherent optical techniques,they are es-
pecially well suited to applications in hybrid digital/optical systams (4],

Several recl-time optical input devices with adjustable parameters and
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thresholding are now under development, and combing these with the half-

toning operation would make possible a real-time nonlinear optical parallel

processor. Such a system would be relatively inexpensive and simple, and

would avoid problems of scanning and display. Electrically controllable

selection of diffraction orders in the Fourier plane of the system would per-

mit fast modification of the transfer functions. Immediate future work will

involve the production of several types of special halftone screens in the

IPI plotting microdensitometer.
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6. Image Analysis Projects

The image analysis projects are concerned with the back-
ground technology necessary to effectively design image coding, res-
toration, enhancemen*, and data extraction systems. Of particular
interest are models of the human visual system for monochrome and
color images, and the development of quantitative measures of image
fidelity and intelligibility.

In the first project the continued research on a model of human
color vision is described. This model is nearly completely developed
and tested, with success. The first applications of the model are now
introduced.

The next report considers the development of a more accurate
model for human monochrome vision. This model incorporates a linear
filtering element before the photoreceptors to account for the optical

degradations of the eye.

6.1 A Quantitative Model of Color Vision
Werner Frei
The first part of this report summarizes recent results of an effort
to describe some major properties of human color vision with a simple
neuro-physiological model. The second part investigates an application
of the model to the optimal quantization of color image signals.
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